Cosmetic Laser Surgery
Perhaps you have been considering cosmetic laser surgery. A cosmetic surgical treatment is voluntary and not medically necessary. You must decide if such a treatment is right for you, and you will have to pay for the procedure with your own money. Health insurance does not cover cosmetic procedures.
How do you know if a cosmetic laser procedure is worth it? How much improvement can you expect in your appearance? What are the advantages of a laser procedure compared to more traditional surgery? What is the down side of a given procedure?
What are the risks, and how do these risks compare to those of alternative treatments? How do you know if a surgeon is qualified and can give you the best possible results? Lasers have unique properties unlike any other surgical instruments. In fact, some cosmetic procedures would simply not be possible without a specialized laser.
For decades many surgical procedures have been done using traditional instruments but can now be performed with lasers that offer significant advantages to the patient: advantages such as less bleeding or no bleeding at all (“bloodless surgery”), no scarring, much greater speed of treatment, much less pain of treatment so that little if any anesthesia is required, less postoperative swelling, and faster healing and recovery.
How can lasers offer so many advantages? One reason is that there are now many different lasers used for cosmetic purposes. Engineers and scientists have been hard at work developing new, specialized lasers for specific cosmetic applications. To understand why these machines work so well, one must have some understanding of human skin.
Many lasers affect a precise component of the skin (usually the structure one hopes to eliminate) and that component only. The laser is designed for the express purpose of eliminating the unwanted skin component—for example, excessive facial blood vessels, pigmented birthmarks or age spots, aged or wrinkled skin, or sagging eyelid skin.
However, lasers are not magical, and much of the perceived benefit of laser surgery is also due to the remarkable healing power of human skin. Lasers are one of the most significant technological developments of the twentieth century. Lasers are machines that produce a pure and intense form of light that occurs naturally nowhere in the universe.
The physical principles that make lasers possible were predicted early in the century along with other aspects of quantum theory. Albert Einstein conjectured about stimulated emission, the theory behind the design of lasers, in 1917. Researchers in the telecommunications industry understood the value that pure, intense light might have in conveying digital information and worked to develop a device based on those theories.
By 1960, the first functioning laser had been developed. Within three years the new devices were already being used for medical applications. By the century’s end, lasers had become the most ubiquitous practical application of quantum theory. Many people encounter lasers nearly every day.
Lasers are found in supermarket bar-code readers, CD-ROM and DVD-ROM computer drives, and CD and DVD audio and video entertainment systems. Fiberoptic cables carry most telephone and internet data in the form of myriad tiny flashes of laser light. High-energy industrial lasers are used to bore through steel.
The unwavering straight line of a laser beam is used in transits by land surveyors and to make precise measurements in construction and road building. Perhaps the most direct experience anyone can have with a laser is to be at the receiving end of a medical laser.
The special properties of lasers have been used to great advantage in medicine and surgery. Many modern surgical procedures would be impossible without laser instrumentation. Surgical lasers produce specific effects that enable precise targeting of abnormal or unwanted tissue while sparing the “good” tissue.
Treatments that were in the realm of fantasy a generation ago are now routine with specialized lasers: complete removal of a tattoo with no scarring or even any discernible change of the very skin in which the tattoo was implanted. Precise removal of thin layers of the cornea to change light refraction and correct eyesight exactly the way glasses or contact lenses would.
Completely bloodless removal of delicate eyelid or facial skin. Rapid and minimally painful permanent destruction of unwanted hair follicles. These and many other surgical advances are only possible through the use of specialized lasers. The majority of medical lasers have been developed for treating skin problems.
Most of the new lasers are designed for cosmetic uses in the skin. A cosmetic application of a laser is very demanding. To be useful, the laser must be able to remove or destroy the unwanted skin component without damaging the other components. A cosmetic laser must be extremely precise and must have very specific effects.
It is not acceptable to apply a “scorched-earth” approach and simply burn out a skin lesion in the same way that more primitive electrosurgery and cautery machines have been used for decades. Excessive damage of the skin resulting in a scar is not acceptable. In most cases the original skin problem looks better than a scar.
The successful development of useful cosmetic lasers has largely been the result of ingenious engineering. Special flashlamps and chemical switches have been used to devise pulsed lasers with very high power output over a very brief duration. Combined with the appropriate wavelength of laser energy, these pulsed lasers provide the needed precision and specificity to treat a wide variety of cosmetic skin problems.
Wavelength (or color), one of the fundamental properties of light, largely determines what skin component will be affected by a laser. Different skin components, such as pigment, absorb certain wavelengths of light much more than other wavelengths. Cosmetic lasers are designed to exploit this specific absorption in order to produce a precise result (for example, removal of a specific skin pigment).
Many of the cosmetic skin lasers are so precise and noninvasive that they can be considered nonsurgical; these lasers are capable of removing only unwanted skin components without altering the overall structure of the skin. Unwanted blood vessels, pigmented lesions, tattoos, and even facial or body hair can be selectively removed, leaving behind completely normal-appearing skin.
The special physical properties of lasers enable the remarkable precision and specific tissue effects that differentiate lasers from all other surgical instruments. Skin is one of the few human tissues that can regenerate and be made young again. In the past few years, it has been the deployment of new surgical cosmetic lasers that has really captured people’s imagination.
Laser resurfacing performed by a skilled cosmetic laser surgeon can erase a generation of skin aging from the face. Although laser resurfacing is a superficial procedure (affecting only the topmost layers of skin), it can result in dramatic smoothing of wrinkles and tightening of facial skin, especially in patients with severe sun damage and wrinkling.
Laser resurfacing alters the skin’s structure and is thus a surgical technique. It replaces aged, wrinkled facial skin with a new layer of regenerated skin. Resurfacing lasers were developed using some of the same principles used in nonsurgical lasers, enabling precise ablation (removal) of thin layers of skin without imparting excessive heat to the skin, thus minimizing the risk of damage and scarring.
Another application of lasers to cosmetic surgery is the use of incisional or cutting lasers instead of scalpels. A major advantage of lasers over scalpels is that the laser can seal off blood vessels as it cuts through tissue. Bloodless surgery in many instances is safer than conventional surgery and results in faster healing with less swelling and bruising.
Knowledge of the structure and function of the skin is essential to understanding how and why lasers are useful tools for cosmetic improvement. Skin has several layers and is composed of cells and extracellular elements. The targets that cutaneous lasers are directed at vary from subcellular components such as melanosomes (pigment granules) to entire layers of skin.
Because certain components of skin, as well as many types of lasers, possess precise and characteristic colors, preferential absorption of laser energy can selectively affect such specific elements as blood vessels or hair follicles or tattoo ink, leaving everything else undamaged.
The laser is designed to affect only a specific colored target, or chromophore (chromo = color, phore = carrier). We will examine the major chromophores in the skin and the lasers that target them. Many cosmetic problems of the skin are related to the aging process.
What exactly happens to facial skin that makes people “look their age” (or maybe even older than their chronological age)? Many of the normal chromophores of the skin such as melanin (skin pigment) and hemoglobin (in red blood cells) become exaggerated and more prominent during the aging process and can be selectively removed with nonsurgical laser treatments.
With aging the overall skin structure and texture is altered, especially in the more superficial skin layers. Because superficial skin layers can regenerate, remarkable improvement in appearance can follow laser resurfacing. The real benefit of this treatment results from the skin’s ability to renew itself.
Under the right conditions, the entire face can be resurfaced and will heal without scarring. We will explore the actual treatment process used for many cosmetic lasers. How is the laser energy confined to the target tissue? What is the end point that the surgeon is trying to achieve during the laser treatment?
What is it like to be the patient? Does a certain laser treatment hurt enough to require anesthesia? What type of anesthesia is used and how is it applied? What is the healing process like? Understanding how lasers work to treat specific skin problems will remove much of the mystery surrounding cosmetic laser surgery.